Small self-sufficient farms / Granjitas autosuficientes

Just how little land can you get by with and still be able to be self-sufficient? Well, that depends of course on what you mean by self-sufficient. It is hardly ever possible to be 100 % self-sufficient, because you can’t really produce all the things that you need and use. But if the definition is to produce most of ones food and exchange some of the products for other stuff then that is surely possible.

There is of course the factor of the quality of the soil. A well-drained soil with access to water will naturally be much more productive than a compacted, poor and ill-treated piece of earth. The good thing is that a poor soil can rapidly be improved and made more fertile applying methods like bio-intensive growing or the theories of permaculture.

In his classic guide for realists and dreamers “Self-sufficiency”, published in 1976, John Seymour gives an example of a one-acre farm (4,046 m2). He envisions a square layout divided in smaller areas, with a tiny house, a larger area for keeping animals and growing fruit trees. The other half of it is divided in four different strips for a vegetable garden. One of the strips is kept inactive for four years, while the other three is rotated every year with different crop groups for improving soil fertility.

John Seymours layout for a one acre self-suffient farm. (Ilustration by Dorling Kindersly)

Critics ha argued that the whole layout is out of scale and that it is impossible to keep a cow on such a small land. Perhaps that is more due to technical issues of the romantic and seducing illustration. Seymour himself writes in the book that you will need to buy plenty of food for the animals to keep them going, there is just not enough space to grow their food on one acre. He says whether you have chosen to be vegetarian or none-vegetarian, the animals are an important part of any farm, not just for giving you food like milk and eggs, but for the important part they play in the natural cycle of growing.

What you most surely will need is to apply intensive methods of growing more on less space. Applying the best growing methods in your backyard or a small detached orchard you could be self-sufficient on even less space. In Brett L. Markhams book “Mini Farming: Self-Sufficiency on 1/4 Acre” the author argues that an average family can produce 85 % of their food on just a quarter of an acre and even earn money on it.

According to John Jeavons’ method for growing bio-intensively you can produce the complete diet for feeding one person on just 316 m2, while conventional farming methods will require as much as 1400–1800 m2 and also still need the addition of fertilizers from other areas. Intensive farming will without doubt play an import role in the future for feeding more people on less space.

¿Con cuanta tierra puede uno ser capaz de ser autosuficiente? Eso depende por supuesto de lo que quieras decir con autosuficiencia. Casi nunca es posible ser 100% autosuficiente, porque realmente no puedes producir todas las cosas que necesitas y usas. Pero si la definición es producir la mayoría de los alimentos e intercambiar algunos de los productos por otras cosas, entonces seguramente eso sea posible.

Por supuesto hay un factor decisivo que es la calidad del suelo. Un suelo bien drenado con acceso al agua será, sin duda, mucho más productivo que un pedazo de tierra compacta, pobre y maltratada. Lo bueno es que un suelo pobre puede mejorarse rápidamente y hacerse más fértil aplicando métodos como el cultivo biointensivo o las teorías de la permacultura.

En su guía clásica para realistas y soñadores “El Horticultor Autosuficiente”, publicada en 1976, John Seymour da un ejemplo de una granja de menos de media hectárea (5.000 m2). Él se imagina un diseño cuadrado dividido en áreas más pequeñas, con una casita, un área más grande para el mantenimiento de los animales y el cultivo de árboles frutales. La otra mitad está dividida en cuatro tiras diferentes para un huerto. Una de las tiras se mantiene inactiva durante cuatro años, mientras que las otras tres se rotan cada año con diferentes grupos de cultivos para mejorar la fertilidad del suelo.

El esquema de John Seymour para una granja autosuficiente en media hectárea. (Ilustración de Dorling Kindersly)

Los críticos han argumentado que todo el diseño está fuera de escala y que es imposible mantener una vaca en un terreno tan pequeño. Quizás eso se deba más a problemas técnicos de la ilustración romántica y seductora del libro. El mismo Seymour escribe en el libro que necesitarás comprar suficiente comida para mantener todos los animales, simplemente no hay suficiente espacio para cultivar sus alimentos en el espacio limitado. Él argumenta que independientemente si hayas elegido ser vegetariano o no vegetariano, los animales forman una parte importante de cualquier granja, no solo por darte alimentos como leche y huevos, sino por la parte crucial que desempeñan en el ciclo natural de crecimiento.

Lo que seguramente necesitarás es usar métodos intensivos para conseguir cultivar más con menos espacio. Aplicando los mejores métodos de cultivo en el patio trasero de la casa o en un pequeño huerto separado, podría llegar a ser autosuficiente incluso con menos espacio. Brett L. Markham argumenta en su libro “Mini Farming: Self-Sufficiency on 1/4 Acre” que una familia promedio puede producir 85% de su comida en solo un cuarto de un acre (1.000 m2) e incluso ganar dinero en ella.

Según el método de John Jeavons para el cultivo biointensivo, se puede producir la dieta completa para alimentar a una persona en solo 316 m2, mientras los métodos de cultivo convencionales requerirán entre 1.400-1.800 m2 al mismo tiempo que necesitarán fertilizantes traído desde otras áreas. La agricultura intensiva sin duda jugará un papel importante en el futuro para poder alimentar a más personas con menos espacio.

A new revolution / Una nueva revolución

The concept of open software and open hardware, without copyright and free to be used and further developed by anyone, is supposing a new industrial revolution, putting advanced yet low-cost micro computing projects in the hands of new users: children, elderly, low-incomers in developing countries, together with the ever so active “makers” like hobby enthusiast and DIY-people (do-it-yourself).

The maker movement is putting individual creators in the centre that for the first time can use a whole infrastructure and ecosystem of new soft and hardware to create customizable and unique interactive projects. The big commercials companies are also joining in, seeing the potential of this trend, getting involved in workshops and “creative garages” to be able support and snap up the best projects. Through the support of many small funders (crowd funding) many small projects can get flying without the hassle and risks of shareholder money and bank loans.

Tiny inexpensive microcomputer boards like the Arduino or the Raspberry Pi, come prepared for all kinds of extensions and can, using motors, sensors and other equipment be converted into advanced process control systems.

There are many uses for this technology in agriculture, from measuring soil and weather data to check plant health, to controlling fans, lamps or irrigations system pumps to respond to these data. Or you can make your own drone to new overview information from your farm.

A smart DIY plant system with Arduino (seeed.cc)

El concepto de software abierto y hardware abierto, sin derechos de autor y libre de ser utilizado y desarrollado por cualquier persona, supone una nueva revolución industrial, poniendo en marcha proyectos de microprocesadores avanzados, pero de bajo costo en manos de nuevos usuarios: niños, ancianos, personas con bajos ingresos en países en desarrollo, junto con los “makers” siempre tan activos como los aficionados entusiastas  y las personas que hacen bricolaje (hágalo usted mismo).

El movimiento de “makers” está poniendo a los creadores individuales en el centro que, por primera vez, pueden usar toda una infraestructura y ecosistema de software y hardware nuevos para crear proyectos interactivos personalizables y únicos. Las grandes compañías comerciales también se están uniendo, viendo el potencial de esta tendencia, participando en talleres creativos y “de garaje” para poder apoyar y obtener los mejores proyectos. Con el apoyo de varios pequeños financiadores (crowd funding), muchos proyectos pequeños pueden salir a volar sin laos problemas y riesgos del dinero de los accionistas y los préstamos bancarios.

Pequeñas y económicas placas de microprocesadores como el Arduino o el Raspberry Pi, vienen preparadas para todo tipo de extensiones y pueden, usando motores, sensores y otros elementos ser convertidas en sistemas avanzados de control de procesos.

Hay muchos usos para esta tecnología en la agricultura, desde la medición de datos del suelo y el clima para controlar la salud de las plantas, hasta el control de ventiladores, lámparas o bombas del sistema de irrigación para responder a estos datos. O puede crear su propio dron a la nueva información general de su granja.

Internet everywhere / Internet en todas partes

The talk about Ubiquitous Internet (Internet anywhere, at any time and for any device) has been going on for years. But if you weren’t situated in an urban area or within coverage of a mobile mast, that just wasn’t going to happen for you. At least not up until now.

One of the many projects underway is called OneWeb and it plans to send enough satellites into orbit around the Earth to give access to Internet from just any part of the globe. But as it is important to have short response times, the satellites have to be much closer to earth, which in turn will require much more satellites for a full global coverage.

So with thousands of satellites, each one more or less as big as a washing machine, orbiting close together at a height of 1200 km, every remote area could have Internet access at a speed up to 50 Mbit/second. To lower the costs for launching the satellite, the company plans to send up 32 of them at the same time.

There are many possible uses for this new infrastructure, not only will it facilitate data collection from remote areas for investigation or agricultural uses, but also geolocation for navigation, leisure or rescue missions as well as to provide any person at any spot of the globe with the possibility to access and make use of the worlds information.

A OneWeb Internet satellite orbiting Earth

La idea de Internet ubicua (Internet en cualquier lugar, en cualquier momento y para cualquier dispositivo) ha estado de moda durante años. Pero si uno no se encontraba en un área urbana o dentro de la zona de cobertura de un mástil móvil, eso simplemente no iba a suceder. Hasta ahora.

Uno de los muchos proyectos en curso se llama OneWeb y planea enviar suficientes satélites en órbita alrededor de la Tierra para dar acceso a Internet desde cualquier parte del mundo. Pero como es importante tener tiempos de respuesta cortos, los satélites deben estar mucho más cerca de la Tierra, lo que a su vez requerirá muchos más satélites para una cobertura global completa.

Entonces, con miles de satélites, cada uno más o menos tan grande como una lavadora, orbitando juntos a una altura de 1.200 km cada zona remota debería poder tener acceso a Internet a una velocidad de hasta 50 Mbit/segundo. Para reducir el coste de lanzamiento del satélite, la compañía se plantea enviar 32 de ellos al mismo tiempo.

Hay muchos usos posibles para esta nueva infraestructura, no solo facilitará la recolección de datos desde áreas remotas para fines de investigación o agricultura, sino también la geolocalización para misiones de navegación, ocio o rescate, así como para proporcionar a cualquier persona en cualquier lugar del mundo la posibilidad de acceder y hacer uso de la información del mundo.

Water management in dry areas / Gestión del agua en zonas secas

Spider web acting as a dew trap
Spider web acting as a dew trap

Fresh water supply is becoming increasingly scarce as many areas are receiving less and less rain. This makes it necessary and urgent to apply different methods for an efficient water management of agricultural lands in rural areas where there is no other source of water than rainfall:

  • Retain and store the rainwater
  • Make the soil more absorbent
  • Keep the soil surface covered
  • Use better adapted plants that need less water
  • Produce your own water

Many rather dry areas get most of their yearly rainfall just on a limited number of occasions with very strong downfall that often just lasts for a short time. Commonly this water just pours across the lands at a high pace drawing fertile soil with it on its, sometimes rather violent, way downhill to end up just to quickly in rivers and seas. But the sooner and higher up that the rain gets retained, the more useful will the water be. By applying low-cost techniques to a create a series of small shallow dams and ditches the rain can be kept on site and perhaps afterward be pumped up to a more permanent storage using low flow solar driven pumps.

The practice of leaving lands as bare as possible and the use of heavy machinery packs the soil hard and limits its ability to admit and store humidity. In contrast, a soil that is full of microbial and vegetal life is like a sponge that will suck up water and keep it stored in the ground. The use of machinery should be limited to lighter vehicles that can be used to open up soil and make in more absorbent.

Many farmers see any presence of other plant species as an unwelcome competitor for water and nutrients. On the contrary, can a well-managed selection of other plants have a positive impact on water retention, transformation of minerals into nutrients and will also increase biodiversity

Keeping the soil covered as much of time as possible, by letting different plants grow all year round, or by the use cuts from pruning and other plant rests to keep the surface covered up, will decrease the loss of humidity in the ground and protect it from drying up under strong solar exposure.

The selection of cultivated species should be well adapted to the local conditions and well suited to grow in areas with less water. Different pruning techniques, that takes away older and bigger branches and leaves room for younger ones can make trees more productive with less water.

Even the driest dessert contains a certain amount of humidity in the air. Different cultures have used different passive techniques to “harvest” the dew from the air. Various types constructions have been applied to bring the temperature of the air humidity down below the dew point to make it condensate and turn into liquid that can be stored. Today there are many different active techniques under development that can use solar energy to produce a cool surface where air humidity can condensate. We will look into those further in a future post.

Telaraña actuando como un atrapador de rocío
Telaraña actuando como un atrapador de rocío

Las provisiones de agua dulce limpia son cada vez más escasas, ya que muchas áreas reciben cada vez menos lluvia. Esto hace necesario y urgente aplicar diferentes métodos para una gestión eficiente del agua en tierras agrícolas en áreas rurales donde no hay otra fuente de agua que la lluvia:

  • Conservar y almacenar el agua de lluvia
  • Hacer que el suelo sea más absorbente
  • Mantener la superficie del suelo cubierta
  • Usar plantas mejor adaptadas que necesitan menos agua
  • Producir su propia agua

Muchas áreas con periodos de sequia extendidos obtienen la mayoría de sus precipitaciones anuales solo en un número limitado de ocasiones con una caída muy fuerte que a menudo dura poco tiempo. Habitualmente, esta agua pasa por encima de las tierras a gran velocidad, arrastrando tierra fértil consigo, a veces de forma bastante violenta, cuesta abajo hasta terminar rápidamente en ríos y mares. Pero cuanto antes y más arriba se conserve la lluvia, más útil será el agua. Mediante la aplicación de técnicas de bajo coste para crear una serie de pequeñas presas y zanjas poco profundas, se puede preservar las aguas pluviales en el propio lugar y para quizás luego ser bombeadas a un almacenamiento más permanente utilizando bombas de bajo caudal impulsadas por energía solar.

La práctica de dejar las tierras lo más desnudas posible y el uso de maquinaria pesada compacta el suelo y limita su capacidad de admitir y almacenar la humedad. Por el contrario, un suelo que está lleno de vida microbiana y vegetal es como una esponja que succionará agua y la mantendrá almacenada en el suelo. El uso de maquinaria debe limitarse a vehículos más ligeros que puedan usarse para abrir el suelo y hacerlo más absorbente.

Muchos agricultores ven cualquier presencia de otras especies de plantas como un competidor no deseado para el agua y los nutrientes. Al contrario de esto, una selección bien gestionada de otras plantas puede tener un impacto positivo en la retención de agua, la transformación de minerales en nutrientes y también aumentará la biodiversidad.

Mantener el suelo cubierto la mayor cantidad de tiempo posible, dejando crecer diferentes plantas durante todo el año, o mediante cortes trituradas de poda y otros restos de plantas para mantener la superficie cubierta, reducirá la pérdida de humedad en el suelo y lo protegerá de secarse bajo una fuerte exposición solar.

La selección de especies cultivadas debe adaptarse bien a las condiciones locales y ser adecuada para crecer en áreas con menos agua. Diferentes técnicas de poda, que quitan las ramas más viejas y más grandes y dejan espacio para las más jóvenes, pueden hacer que los árboles sean más productivos con menos agua.

Incluso el desierto más seco contiene una cierta cantidad de humedad en el aire. Diferentes culturas han usado diferentes técnicas pasivas para “cosechar” el rocío del aire. Se han aplicado diversas construcciones de tipos para reducir la temperatura de la humedad del aire por debajo del punto de condensación y condensarla y convertirla en un líquido que pueda almacenarse. Hoy en día hay muchas técnicas activas diferentes en desarrollo que pueden usar energía solar para obtener una superficie refrigerada donde la humedad del aire puede condensarse. Investigaremos estas técnicas más en futuras publicaciones.